A Guide for Designing with Axial Gradient-Index Materials Constrained to Real Material Properties in Code V

Written by Peter McCarthy University of Rochester

I. Material Model

The gradient-index material model assumes a smooth change in composition from one homogeneous material to another. Any two-component GRIN system can be modeled with these tools. The refractive index is represented as

$$n = n_1 + C_2(n_2 - n_1),$$

where n_1 is the refractive index of material one and C_2 is the fractional concentration of material two (ranging from zero to one). This linear representation is not strictly true for all materials, but it is a useful approximation for modeling the material properties.

The refractive index distribution is given the usual polynomial expansion representation

$$n(z) = N_{00} + N_{01}z + N_{02}z^2 + \cdots$$

One can also consider the composition profile of the material

$$C(z) = C_{00} + C_{01}z + C_{02}z^2 + \cdots.$$

For a given composition profile, the refractive index profile is fixed for all wavelengths based on the linear model of index vs. composition. However, the standard implementation of gradient-index materials in Code V uses the index function representation. As such, it is essential for the designer to ensure the index profile at different wavelengths agrees with the real material properties. The following sections of this document describe a set of tools to accomplish this task.

II. Entering a GRIN Profile in Code V

The bulk of the design tools are contained within one Excel spreadsheet. This file contains material properties for several possible GRIN materials as well as the constraints for optimization in Code V. The first worksheet of the Excel file, "Material Properties", contains the material properties for several candidate GRIN materials, including ALON, ZnS/ZnSe, PMMA-Polystyrene, and a Titania-Silicate GRIN glass. For a given material the spreadsheet looks like this:

ALON (N2 model)	Wavelength (um)	5	4	3	2.5	2	1.5	1	0.656	0.587	0.486
	n2-n1	0.008671	0.009372	0.009672	0.009743	0.009787	0.009819	0.009863	0.009952	0.00999	0.01008
	n1	1.647659	1.69579	1.730158	1.74315	1.753824	1.762753	1.771715	1.78276	1.786949	1.796364

The cells that are highlighted in yellow indicate fields that require user input. The user can enter up to ten wavelengths (in microns, ordered from longest to shortest). The first three wavelengths are required and the remaining seven are optional. Use a value of zero for any wavelength you do not wish to use. The values for slope and y-intercept are calculated based on the material and the wavelengths chosen. New materials combinations can be added if the dispersion formulae for the two homogeneous materials are known. Keep in mind that manufacturing limitations should also be considered.

The second worksheet, "Create New Materials", includes the framework for adding new GRIN materials, as well as a way to easily select the materials for n_1 and n_2 from a drop-down menu. New homogeneous materials can be added to the available choices by simply inserting a Sellmeier equation (or equivalent dispersion fit) in the same manner that the existing materials are defined.

			Wavelength (um)	5	4	3	2	1	0	0	0	0	0
Material 1	ZnS		n2-n1	0.183140797	0.181188	0.180271	0.181528	0.195987	0	0	0	0	0
Material 2	ZnSe	•	n1	2.246386391	2.251971	2.257308	2.264671	2.292837	1	1	1	1	1
	Second Select endpo list.	I Material GRIN material nt from the											

Once the desired material and wavelengths have been selected, the user should copy the wavelength, slope, and y-intercept data and paste it in the second worksheet of the file ("Axial GRIN Controls") as seen below.

Material Data:		Wavelength (um)	5	4	3	2.5	2	1.5	1	0.656	0.587	0.486
n = (n2-n1)*(Concentration	n) + n1	n2-n1	0.00867139	0.009372	0.009672	0.0097431	0.009787	0.009819	0.009863	0.009952	0.00999	0.01008
		n1	1.64765885	1.69579	1.730158	1.7431497	1.753824	1.762753	1.771715	1.78276	1.786949	1.796364

From here, the next step is to input the GRIN profile that you wish to start with. Again, cells that are highlighted and outlined in bold require user input. The controls for the starting profile include the concentration at z = 0 (the surface vertex) and the index polynomial coefficients (N₀₁, N₀₂) at the longest wavelength. The user also needs to enter the depth of the gradient. The depth is typically equal to the sag of the surface. Enter the depth as a positive number for a gradient on the first surface of the element, or enter as a negative number for a gradient on the second surface of the element.

Input initial GRIN	profile		Refractive In	ndex								
		Concentration	5 um	4 um	3 um	2.5 um	2 um	1.5 um	1um	0.656 um	0.587 um	0.486 um
At z = 0		0.9	1.6554631	1.704225	1.738862	1.7519186	1.762632	1.77159	1.780592	1.791717	1.79594	1.805436
At z = GRIN depth		0.208069459	1.6494631	1.69774	1.73217	1.745177	1.75586	1.764796	1.773767	1.784831	1.789028	1.798461
Maximum		0.9	1.6554631	1.704225	1.738862	1.7519186	1.762632	1.77159	1.780592	1.791717	1.79594	1.805436
Minimum		0.208069459	1.6494631	1.69774	1.73217	1.745177	1.75586	1.764796	1.773767	1.784831	1.789028	1.798461
		∆n	0.006	0.006485	0.006692	0.0067416	0.006772	0.006794	0.006825	0.006886	0.006913	0.006974
Gradient depth	3	Distance from GRI	N surface ve	rtex to hor	nogeneou	s componen	t (>0 for fr	ont surfac	e GRIN, < 0	for back su	urface GRIN	1)
		Vary Coefficient?										
		(yes or no)										
N0		yes	1.6554631	1.704225	1.738862	1.7519186	1.762632	1.77159	1.780592	1.791717	1.79594	1.805436
N01		yes	-2.00E-03	-0.00216	-0.00223	-0.002247	-0.00226	-0.00226	-0.00227	-0.0023	-0.0023	-0.00232
N02		no	0	0	0	0	0	0	0	0	0	0

A plot of the concentration profile is provided so the user can make sure the profile is within the material bounds (usually zero to one).

The user can also control whether the coefficients are varied during optimization in Code V by inputting "yes" or "no" in the appropriate boxes.

Below the profile controls, the Abbe number of the homogeneous material (V0) and the gradient (VGRIN) are calculated over three different wavelength bands.

Dispersion	Based on 3, 4, 5 um	Based on 2, 3, 5 um	Based on 0.486, 0.656, 1.5 um		
V0 =	8.44406	6.894369	23.39212		
VGRIN =	9.370441	8.667996	38.20528		

Next, the user has control over the concentration bounds of the material (C_2 from section I above). For example, with a PMMA-Polystyrene gradient the physical material bounds are between zero and one. If a manufacturing process is not able to achieve that full composition change, then the designer would change those appropriately (for example, make them 0.1 to 0.9). When using the gradient ALON, there is some flexibility here. The composition range of zero to one represents the range of composition that has been fabricated in homogeneous ALON samples. However, GRIN samples have been made with an effective composition range of -1.64 to 1.57. This extended range is reasonable for the designer to use. This tool allows the designer to change these limits and explore the design space, in turn motivating further development of the ALON GRIN material.

Minimum concentration	0	Constrain concentration to be within these manufacturable limits
Maximum concentration	1	Should be (0,1) for all real materials, and ALON can safely be pushed to (-1.64,1.57)

The last user-entered values relate to inserting this gradient profile into Code V. The "Element ID" field is used to name the private catalog glass. The ID can be a number or it can be up to four characters that describe the GRIN material (for example "pmma" or "ALON"). This same name also must be given to the surface that contains the GRIN material. For example, if the user enters "3" for the element ID then the private catalog glass is titled 'grin3' and the surface that contains this material must also be labeled grin3. If the element ID is "pmma" then the private catalog glass is titled 'grinpmma' and the surface must be labeled grinpmma. The last user input is the step size (in mm) for the ray tracing calculation. A smaller value will be more accurate but require longer processing time. The designer should ensure that the step size is small enough so it is not introducing ray trace errors. This can be checked by tracing a real ray through the lens system and monitoring how its output height changes with step size. The step size can be changed in the "Surface Properties" section of the Code V GUI.

Create private catalog GRIN	Element ID	1		step size	0.05
	Note: Can't be	e more than 4 c			

Since the axial gradient has its largest effect at the surface, a single element is modeled with three surfaces in Code V, which acts as a GRIN element cemented to a homogeneous element. The homogeneous index is chosen to match the GRIN index at the middle surface. A schematic of this cemented element and the associated index profile is shown below. Therefore, in order to input an axial GRIN element, the user must create this cemented element that contains the GRIN component and homogeneous component. The homogeneous private catalog material will be named "homo*ID*", where *ID* is the "Element ID" specified by the user. The surface of the homogeneous material also needs to be labeled in Code V with the same name.

After all user input fields have been entered, there are cells that contain a list of commands that create the homogeneous and GRIN private catalog glasses with the given profile and material properties. These two lists of commands should be copied and pasted into the Code V command window.

			Element ID	1		step size	0.1		
Create private catalog Gl	RIN		Note: Can't l	pe more tha	n 4 charact	ers			
PRV; PWL 5000 4000 300	0 2500 2000	0 1500 1000 656 587	7 486 ; 'grin1' :	1.65199454	825977 1.7	00476155205	563 1.73499	333961576	51.7480213
Create private catalog ho	omogeneou	us material				step size	0.1		
For GRIN on front surfac	е								
PRV: PWL 5000 4000 300	0 2500 2000	0 1500 1000 656 587	7 486 : 'homo	1.650994	54825977 1	.6993953839	9186 1.733	878001261	1 1.746897

Command Window	
🔁 🔁 Clear Text	
<pre>= PRV; FWL 5000 4000 3000 2500 2000 1500 1000 656 587 486 ; 'grin1' 1.65546310450852 Private catalog inputs must be terminated by END Refractive indices of the lens system have been deleted and re-entered = PRV; FWL 5000 4000 3000 2500 2000 1500 1000 656 587 486 ; 'homol' 1.64946310450852 Private catalog inputs must be terminated by END</pre>	1.704224870
Refractive indices of the lens system have been deleted and re-entered	
CODE V>	•

To assign the new GRIN material to one of the surfaces, simply enter the private catalog glass name at the appropriate surface in the lens data manager. Remember, again, to also label the surface with the same name. So, for an "Element ID" of 1, the surface labels should be "grin1" and "homo1".

💷 Lens Data N	lanager							23
System D	ata Su	urface Properties						
Surface #	Surface Name	Surface Type	Y Radius	Thickness	Glass	Refract Mode	Y Semi-Aperture	
Object		Sphere	Infinity	Infinity		Refract	0	
Stop	grin1	Sphere	Infinity	3.000000	'grin1'	Refract	1.000000 0	
2	homo1	Sphere	Infinity	2.000000	'homo1'	Refract	1.000000 0	
3		Sphere	Infinity	0.000000		Refract	1.000000 0	
Image		Sphere	Infinity	0.000000		Refract	1.000000 0	
			End	Of Data				<u> </u> _

The designer can view the index profile by running the accompanying macro file "plotgrin_polychrom.seq". The user must indicate the surface, that the profile is axial, and the zoom position.

This material with the entered profile can be used in a design just as any other private catalog glass. This is useful for doing polychromatic evaluation of a profile that has been manufactured and measured. The next section covers the basics of optimizing the coefficients of the index polynomial.

III. Optimizing the GRIN Coefficients in Code V

The Excel spreadsheet contains an additional command to vary the GRIN profile coefficients. This should be copied and pasted into the Code V command window. Alternatively, the command can be placed before the AUT command in the optimization sequence file so that it is clear which coefficients are varying for every use of the optimization file.

Vary gradient coef	ficients		
GRC C0 'grin1' 0; G	RC CO1 'gri	n1' 0; GRC C02 'grin	1' 100;
Vary homogeneou	ıs index		
GRC C0 'homo1' 0;			

Command Window	- • ×
e 면 Clear Text	
<pre>=GRC C0 'grin1' 0; GRC C01 'grin1' 0; GRC C02 'grin1' 100; =GRC C0 'homo1' 0;</pre>	- -
	•
CODE V>	•

Now the index profile coefficients at all wavelengths can vary. This can be seen by the small "v" in the lens data manager.

💷 Lens Data N	lanager							83
System Da	ata Si	urface Properties						
Surface #	Surface Name	Surface Type	Y Radius	Thickness	Glass	Refract Mode	Y Semi-Aperture	•
Object		Sphere	Infinity	Infinity		Refract	0	
Stop	grin1	Sphere	Infinity	3.000000	'grin1'	V _{Refract}	1.000000 0	
2	homo1	Sphere	Infinity	2.000000	'homo1'	V _{Refract}	1.000000 0	
3		Sphere	Infinity	0.000000		Refract	1.000000 0	
Image		Sphere	Infinity	0.000000		Refract	1.000000 0	
			End	Of Data	3			
•)	

The Excel file creates a list of constraints (over 100 lines) that must be copied and pasted into a .seq file for optimization in Code V. There are different sets of constraints for having the gradient on the front surface or the back surface, so the user must select the correct set of constraints.

Create Optimization Constraints For Adding GR	RIN to Front S	urface of Elei	ment	
! CONSTRAINTS FOR OPTIMIZING WITH AL	LON LINEAR	AXIAL GRAI	DIENT ON FRON	IT SURFACE
! Define gradient coefficients at al	ll waveleng	ths		
@N0_10_1 == (GRN C0 S'grin1' W1)				
@N0_9_1 == (GRN C0 S'grin1' W2)				
@N0_8_1 == (GRN C0 S'grin1' W3)				
@N0_7_1 == (GRN C0 S'grin1' W4)				
<pre>@N0_6_1 == (GRN C0 S'grin1' W5)</pre>				
@N0_5_1 == (GRN C0 S'grin1' W6)				
<pre>@N0_4_1 == (GRN C0 S'grin1' W7)</pre>				
@N0_3_1 == (GRN C0 S'grin1' W8)				
<pre>@N0_2_1 == (GRN C0 S'grin1' W9)</pre>				
@N0_1_1 == (GRN C0 S'grin1' W10)				
@N01_10_1 == (GRN C01 S'grin1' W1)				

This optimization file should also contain any other constraints needed for the designer's system, including focal length, thickness, etc.

CVEdit - [aut_ALON_axial.seq]	• X	
Eile Edit View Window Help	- 8	×
AUT INT Y	ſ	
DRA S1I		Ξ
EFL = 100		-
ET S'homo1' > 3 < 5		
! CONSTRAINTS FOR OPTIMIZING WITH ALON LINEAR AXIAL GRADIENT ON FRONT SURFACE		
<pre>! Define gradient coefficients at all wavelengths @NO 10 1 == (GRN C0 S'grin1' W1)</pre>		
@N0_9_1 == (GRN C0 S'grin1' W2)		
$(0NO_8_1 == (GRN CO S'grin1' W3)$ $(0NO_7_1 == (GRN CO S'grin1' W4)$		
@NO 6 1 == (GRN CO S'grin1' W5)		
$0N0^{5}1 == (GRN C0 S'grin1' W6)$		
$(0NO_4_1 == (GRN CO S'grin1' W7)$ $(0NO_3_1 == (GRN CO S'grin1' W8)$		
$(3NO_2 1 = (GRN CO S'grin1' W9)$		
@N0_1_1 == (GRN C0 S'grin1' W10)		
<pre>@N01_10_1 == (GRN C01 S'grin1' W1) </pre>		
$(0NO1_9_1 == (GRN CO1 S'grin1' W2)$ (0NO1 8 1 == (GRN CO1 S'grin1' W3)		
@N01 7 1 == (GRN C01 S'grin1' W4)		÷
<	E.	
Ready		1

The lens can now be optimized while maintaining the correct dispersion properties. It is essential that the wavelengths used in the lens file are the same as those used when creating the optimization constraints because each user-defined constraint is tied to the material properties at a specific wavelength.

Command Window	
*	
*	_
*	_
•	
*	-
	•
CODE V> in aut1;go	•

During the optimization process, it is important to monitor the constraints on the GRIN coefficients. Each coefficient is scaled by the appropriate power of z so that the value of the user-defined constraint is in Δn space.

Command Window						
🗐 🖽 🛛 Clear Text						
Active Constraints -	31:	target	value	diff	cost	-
EFL	=	1.00000E+02	9.99995E+01	-5.208E-04	-1.798E+00	
ET S2	<	5.00000E+00	4.99997E+00	-3.492E-05	7.498E-04	
@DN0_9_1	=	0.00000E+00	-2.22045E-16	-2.220E-16	-1.214E+00	
@DN0_8_1	=	0.00000E+00	-2.22045E-16	-2.220E-16	-4.111E-01	
@DN0_7_1	=	0.00000E+00	-2.22045E-16	-2.220E-16	-1.069E-01	
@DN0_6_1	=	0.00000E+00	-2.22045E-16	-2.220E-16	-8.512E-02	
@DN0_5_1	=	0.00000E+00	-2.22045E-16	-2.220E-16	3.529E-01	
@DN0_4_1	=	0.00000E+00	-2.22045E-16	-2.220E-16	5.638E-01	
@DN0_3_1	=	0.00000E+00	-2.22045E-16	-2.220E-16	8.246E-01	
@DN0_2_1	=	0.00000E+00	0.00000E+00	0.000E+00	9.238E-01	
@DN0_1_1	=	0.00000E+00	0.00000E+00	0.000E+00	1.147E+00	
@DN01_9_1	=	0.00000E+00	-1.30104E-18	-1.301E-18	-2.327E+00	
@DN01_8_1	=	0.00000E+00	-3.90313E-18	-3.903E-18	-8.158E-01	
@DN01_7_1	=	0.00000E+00	-2.16840E-18	-2.168E-18	-2.415E-01	
@DN01_6_1	=	0.00000E+00	3.46945E-18	3.469E-18	2.360E-01	
@DN01_5_1	=	0.00000E+00	8.67362E-19	8.674E-19	6.285E-01	
@DN01 4 1	=	0.00000E+00	-8.67362E-19	-8.674E-19	1.028E+00	
@DN01 3 1	=	0.00000E+00	0.00000E+00	0.000E+00	1.521E+00	
@DN01_2_1	=	0.00000E+00	-8.67362E-19	-8.674E-19	1.709E+00	
@DN01_1_1	=	0.00000E+00	-8.67362E-19	-8.674E-19	2.131E+00	
@NH_10_1	=	0.00000E+00	-8.36328E-07	-8.363E-07	-4.584E-01	
@NH_9_1	=	0.00000E+00	-9.03880E-07	-9.039E-07	-2.374E-01	-
						Þ
Do next cycle? [Yes,No	,Quit	;]				•

In the example above, the GRIN coefficient constraints are all of order 10⁻¹⁶ or smaller, which is very well constrained. The designer should be concerned when the magnitudes of these constraints are larger than 10⁻⁶. In cases where the constraints are not being obeyed, there are two options the designer can use to gain more control over the optimization. The first is changing the update interval for the GRIN variable derivative increments, and the second is changing the derivative type from default to finite differences. It is recommended that both of these changes are made at the beginning of any optimization. First, it is necessary to attain a list of all variables in the system so the designer can identify which ones correspond to gradient coefficients. This is done with the "DER LIS" command.

Command Wind	wob							83
🖳 🔁 🔤 Clear T	ext							
≡der lis								
VARIAE	BLE LIST							
		INCREMENT	REFRESH	UPDATE				
NO	DER INCREMENTS	TYPE	INTERVAL	INCREMENTS	FREEZE	PARAMETERS *		
1	0.25456E-03	def	-	Yes	no	CUY S1 CI	JY S3	
2	0.78401E-04	def	-	Yes	no	CUY S3		
3	0.11144E+01	def	-	Yes	no	THI S1		
4	0.11145E+01	def	-	Yes	no	THI S2		
5	-0.13117E-01	def	-	yes	no	THI S4		
6	0.25403E-03	def	-	Yes	no G	GRN W1 'grin1'		
7	0.25343E-03	def	-	Yes	no G	GRN W2 'grin1'		
8	0.25295E-03	def	-	Yes	no G	GRN W3 'grin1'		
9	0.25275E-03	def	-	yes	no G	GRN W4 'grin1'		
10	0.85895E-04	def	-	yes	no G	GRN W5 'grin1'		
11	0.25244E-03	def	-	yes	no G	SRN W6 'grin1'		
12	0.25229E-03	def	-	yes	no G	SRN W7 'grin1'		
13	0.25210E-03	def	-	yes	no G	SRN W8 'grin1'		
14	0.25203E-03	def	-	yes	no G	SRN W9 'grin1'		
15	0.25187E-03	def	-	yes	no G	GRN W* 'grin1'		
16	-0.11647E-03	def	-	yes	no t	JRN C1 W1 'grin1		
17	-0.11601E-03	def	-	yes	no t	JRN C1 W2 'grin1		_
18	-0.11563E-03	def	-	yes	no t	JRN C1 W3 'grin1		-
•								•
CODE V>								•

In this example, the variables starting at number 6 and going all the way down to number 35 are associated with the gradient. Now, to change the derivative update interval, use the command "DER i6..35 DRC #", where # is how often you want the derivatives recomputed. For example, use "DER i9..48 DRC 1" to update the derivatives after every optimization iteration. Note that the optimization will be noticeably slower when using DRC 1. To change the derivative type to finite differences issue the command "DER i6..35 FDF". Now you can see that the GRIN variables have been changed.

💷 Comm	and Wind	low						, .	83
•	Clear T	ext							
≡der li	is								
	VARIAE	3LE LIST							
			INCREMENT	REFRESH	UPDATE				
	NO	DER INCREMENTS	TYPE	INTERVAL	INCREMENTS	FREEZE	PARAMETERS *		
	1	0.25456E-03	def	-	yes	no	CUY S1 C	CUY S3	
	2	0.78401E-04	def	-	yes	no	CUY S3		
	3	0.11144E+01	def	-	yes	no	THI S1		
	4	0.11145E+01	def	-	yes	no	THI S2		
	5	-0.13117E-01	def	-	yes	no	THI S4		
	6	-	FDF	1	yes	no (GRN W1 'grin1'		
	7	-	FDF	1	yes	no (GRN W2 'grin1'		
	8	-	FDF	1	yes	no (GRN W3 'grin1'		
	9	-	FDF	1	yes	no (GRN W4 'grin1'		
	10	-	FDF	1	yes	no (GRN W5 'grin1'		
	11	-	FDF	1	yes	no (GRN W6 'grin1'		
	12	-	FDF	1	yes	no (GRN W7 'grin1'		
	13	-	FDF	1	yes	no (GRN W8 'grin1'		
	14	-	FDF	1	yes	no (GRN W9 'grin1'		
	15	-	FDF	1	yes	no (GRN W* 'grin1'		
	16	-	FDF	1	yes	no l	JRN C1 W1 'grin1	1'	
	17	-	FDF	1	yes	no l	JRN C1 W2 'grin1	11	
	18	-	FDF	1	yes	no l	JRN C1 W3 'grin1	1.	-
•								Þ	<u> </u>
CODE V	>								•
	1								_

A GRIN element can be optimized inside a more complicated multi-element system by following this same procedure. Additionally, multiple GRIN elements can be optimized in the same lens system, provided they are given different element numbers when creating the constraints. When using multiple gradient materials, it is good practice to comment in the optimization file what the materials are for each GRIN element. These tools will also allow the designer to constrain a GRIN element when using the new Glass Expert feature in Code V. Note that Glass Expert cannot insert a GRIN element into the system, but it will constrain an existing GRIN while it searches for better homogeneous materials in other elements. Early versions of Glass Expert had some issues with changing the user-set derivative properties of the GRIN variables. The designer should make sure that the GRIN constraints are being obeyed.

IV. Quick Start Guide

- 1. In the "Material Properties" or "Create New Materials" worksheets of the Excel file, choose which material and wavelengths you wish to use.
 - a. Use at least 3 wavelengths and as many as 10. Enter a value of zero for any wavelengths you don't wish to use.
 - b. List wavelengths from longest to shortest.
- 2. Copy and paste wavelength, slope, and y-intercept values into the top of the "Axial GRIN Controls" worksheet.
- 3. Input initial GRIN profile.
 - a. Select concentration at z = 0 and the polynomial coefficients at the longest wavelength.
 - b. Use the gradient depth and the plot of the concentration profile to ensure your starting position is within the material bounds. Use a positive GRIN depth for GRIN on the front surface, and negative depth for GRIN on the rear surface.
 - c. Dispersion properties of homogeneous material and GRIN can be monitored.
- 4. Input optimization controls.
 - a. Determine which coefficients you wish to vary during optimization.
 - b. Enter upper and lower concentration bounds based on real material properties.
 - c. Enter element ID (limited to 4 characters).
 - d. Enter ray trace step size.
- 5. Insert initial GRIN profile into Code V.
 - a. The axial GRIN element is a GRIN material cemented to a homogeneous material, so insert the appropriate surfaces.
 - b. Copy the command that starts with "PRV; PWL" and paste it into the Code V command window for both the homogeneous and GRIN private catalog materials.
 - c. Set the center thickness of the GRIN element to be the same as the "GRIN depth".
 - d. If you wish to optimize the GRIN profile, also copy and paste the command that starts with "GRC" for both the homogeneous and GRIN materials.
 - e. In the lens data manager, change the material to the correct private catalog glass, 'grin*ID*' and 'homo*ID*', where *ID* is the (less than 4 character) ID you entered in Excel.
 - f. Label the surface with the same name, grin*ID* or homo*ID*.
- 6. Copy and paste optimization constraints into a sequence file with any other constraints needed for the lens system.
 - a. Select the correct set of constraints depending on if the GRIN is on the front or back surface.
- 7. Optimize the system as you normally would by loading in the .seq file.
 - a. Use the same wavelengths in Code V as you did when you created the optimization constraints. The optimization will not be correct if the wavelengths in Code V are different than those used for the optimization sequence file.
 - b. Monitor the user-defined constraints for the GRIN profile and adjust the derivatives appropriately.
 - c. View the index profile plot periodically using the plotgrin.seq macro.
 - d. Change the derivative type to FDF or change the derivative increment to improve optimization behavior.

V. Caveats and Warnings

1. Code V 10.6 made a change to the predefined INDEX function. Code V version 10.5 and earlier are unaffected. From the 10.6 release notes:

"The behavior of the INDEX macro function has been changed. The input (X, Y, Z) coordinates now refer to the global reference surface coordinate system defined with the GGS command rather than the local surface coordinates."

- a. The INDEX function is used in the constraints to make sure the index values within the lens element are constrained within the material bounds. It is also used in the plotting macros.
- b. This is only an issue if you change the reference coordinate system for the GRIN to be a surface other than the GRIN surface.
- c. For small shifts of the GGS surface relative to the GRIN surface, the existing constraints might be tolerable.
- d. For a workaround in version 10.6 please contact the UR GRIN group.
- 2. The refractive index data in the Excel file is either from literature sources or it has been measured at University of Rochester. Verify that the index data is appropriate for the materials you are using.
- 3. These constraints are based on a linear material model, which may not be the most accurate model for all GRIN materials. Users need to verify that this model adequately describes their materials of interest.